Acta Crystallographica Section E

Structure Reports

Online

catena-Poly[[[diaquacalcium(II)]-di- μ -3-carboxyphenoxyacetato] dihydrate]

ISSN 1600-5368

Shan Gao ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\text {b }}$ *

${ }^{\text {a }}$ College of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
H -atom completeness 82%
Disorder in solvent or counterion
R factor $=0.045$
$w R$ factor $=0.131$
Data-to-parameter ratio $=16.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The Ca atom in the title compound, $\left\{\left[\mathrm{Ca}\left(\mathrm{HO}_{2} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{OCH}_{2}-\right.\right.\right.$ $\left.\left.\left.\mathrm{CO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, is eight-coordinate. The $\mathrm{HO}_{2} \mathrm{CC}_{6} \mathrm{H}_{4}-$ $\mathrm{OCH}_{2} \mathrm{CO}_{2}{ }^{-}$monoanion binds in a chelating mode; it also functions as a bridge, linking adjacent Ca atoms into a zigzag chain. Hydrogen bonds link the chains into a three-dimensional network. The Ca atom lies on a special position of site symmetry 2 .

Comment

A preceeding study ($\mathrm{Gao} \& \mathrm{Ng}$, 2006) reports the structure of the cadmium derivative of 3 -carboxyphenoxyacetic acid; the acid is doubly deprotonated and the dianion links the watercoordinated Cd atoms into a linear chain.

With calcium in place of cadmium, a similar synthesis, but employing less than half the stoichiometric quantity of the acid, has ensured that the acid is only mono-deprotonated. The calcium derivative is formally the water-coordinated complex, $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{HO}_{2} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{OCH}_{2} \mathrm{CO}_{2}\right)_{2} \mathrm{Ca}$, which crystallizes as a dihydrate (Scheme, Fig. 1). The acid H atom is retained by the carboxyl unit that is directly connected to the benzene ring, and the carboxylic acid portion engages in hydrogen-bonding interactions (Table 2), giving rise to a three-dimensional network.

Figure 1
ORTEPII plot of a portion of the chain structure of $\mathrm{Ca}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{5}\right)$ ${ }_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. Displacement ellipsoids are drawn at the 50% probability level, and H atoms are drawn as spheres of arbitrary radii. The disordered uncoordinated water molecule is not shown.

Received 24 December 2005

The carboxylate group of the oxyacetate arm binds in a chelating mode; additionally, one of the two O atoms interacts with an adjacent Ca atom. Such a bridging interaction leads to the formation of a zigzag chain that runs along the c axis (Fig. 2). The Ca atom is eight-coordinate; however, the geometry cannot be ascribed to a regular polyhedron.

Experimental

Calcium nitrate tetrahydrate $(0.78 \mathrm{~g}, 5 \mathrm{mmol})$ and 3-carboxyphenoxyacetic acid ($0.39 \mathrm{~g}, 2 \mathrm{mmol}$) were dissolved in a small volume of hot water. Colorless prisms separated from the solution after several days. C\&H analysis. Calc. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{14} \mathrm{Ca}$: $\mathrm{C} 43.02, \mathrm{H} 4.42 \%$. Found: C 43.06, H 4.45\%.

Crystal data

$\left[\mathrm{Ca}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{5}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$D_{x}=1.441 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=502.44$	Mo $K \alpha$ radiation
Monoclinic, C2/c $a=26.902$ (5) A	Cell parameters from 10195 reflections
$b=14.492$ (3) \AA	$\theta=3.1-27.4^{\circ}$
$c=6.057$ (1) \AA	$\mu=0.34 \mathrm{~mm}^{-1}$
$\beta=101.28$ (3) ${ }^{\circ}$	$T=295$ (2) K
$V=2315.6$ (8) \AA^{3}	Prism, colorless
$Z=4$	$0.36 \times 0.25 \times 0.18 \mathrm{~mm}$
Data collection	
Rigaku RAXIS-RAPID IP diffractometer	2622 independent reflections 2340 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.021$
Absorption correction: multi-scan	$\theta_{\text {max }}=27.4^{\circ}$
ABSCOR (Higashi, 1995)	$h=-34 \rightarrow 33$
$T_{\text {min }}=0.691, T_{\text {max }}=0.941$	$k=-18 \rightarrow 18$
10847 measured reflections	$l=-7 \rightarrow 7$

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0777 P)^{2}\right.$ $+2.6608 P]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.42 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.37 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA{ }^{\circ},{ }^{\circ}$).

Ca1-O1	2.488 (2)	Ca1-O2	2.537 (2)
$\mathrm{Ca} 1-\mathrm{O} 1^{\text {i }}$	2.488 (2)	$\mathrm{Ca} 1-\mathrm{O} 2^{\text {i }}$	2.537 (2)
$\mathrm{Ca} 1-\mathrm{O} 1^{\text {ii }}$	2.386 (1)	$\mathrm{Ca1-O1w}$	2.393 (2)
$\mathrm{Ca} 1-\mathrm{O} 1^{\text {iii }}$	2.386 (1)	$\mathrm{Ca} 1-\mathrm{O} 1 w^{\text {i }}$	2.393 (2)
$\mathrm{O} 1-\mathrm{Ca} 1-\mathrm{O} 1^{\text {i }}$	146.2 (1)	$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Ca} 1-\mathrm{O} 2$	126.3 (1)
$\mathrm{O} 1-\mathrm{Ca} 1-\mathrm{O} 1^{\text {ii }}$	74.4 (1)	$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Ca} 1-\mathrm{O} 2^{\text {i }}$	80.9 (1)
$\mathrm{O} 1-\mathrm{Ca} 1-\mathrm{O} 1^{\text {iii }}$	81.6 (1)	$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Ca} 1-\mathrm{O} 1 w$	95.9 (1)
$\mathrm{O} 1-\mathrm{Ca} 1-\mathrm{O} 2$	52.0 (1)	$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Ca} 1-\mathrm{O} 1 w^{\mathrm{i}}$	155.5 (1)
$\mathrm{O} 1-\mathrm{Ca} 1-\mathrm{O} 2^{\text {i }}$	142.4 (1)	$\mathrm{O} 2-\mathrm{Ca} 1-\mathrm{O} 2^{\mathrm{i}}$	144.7 (1)
$\mathrm{O} 1-\mathrm{Ca} 1-\mathrm{O} 1 w$	76.6 (1)	$\mathrm{O} 2-\mathrm{Ca} 1-\mathrm{O} 1 w$	77.0 (1)
$\mathrm{O} 1-\mathrm{Ca} 1-\mathrm{O} 1 w^{\mathrm{i}}$	130.1 (1)	$\mathrm{O} 2-\mathrm{Ca} 1-\mathrm{O} 1 w^{\mathrm{i}}$	78.2 (1)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Ca} 1-\mathrm{O} 1^{\text {iii }}$	88.7 (1)	$\mathrm{O} 1 w-\mathrm{Ca} 1-\mathrm{O} 1 w^{\mathrm{i}}$	89.9 (1)
Symmetry codes: $x,-y+1, z+\frac{1}{2} \text {. }$	$x+1, y,-$	(ii) $-x+1$,	1; (iii)

Figure 2
ORTEPII plot of the chain motif; the uncoordinated water molecules are not shown.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{o} \cdots \mathrm{O} 2^{\text {iv }}$	0.85	1.89	2.720 (2)	166
$\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{O} 2 w$	0.85	2.09	2.925 (8)	168
$\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots \mathrm{O}^{\text {v }}$	0.85	1.91	2.704 (2)	156

The carbon-bound H atoms were positioned geometrically [$\mathrm{C}-\mathrm{H}$ 0.93 or $0.97 \AA$] and were included in the refinement in the ridingmodel approximation, with $U(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$. The H atoms of the coordinated water molecule were similarly treated [O-H $0.85 \AA$, $\left.U(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})\right]$; these were rotated to fit the electron density.

The uncoordinated water molecule is disordered over two positions and the occupancy refined to 0.67 (1):0.33 (1). The displacement parameters of the two components were set to equal each other; these were restrained to be nearly isotropic. H atoms were not added to the disordered components.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank the National Natural Science Foundation of China (No. 20101003), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (No. 1054 G036) and the University of Malaya for supporting this study.

References

Gao, S. \& Ng, S. W. (2006). Acta Cryst. E62, m179-m180.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

